Repositório do Conhecimento Institucional do Centro Universitário FEI
 

Artigos

URI permanente para esta coleçãohttps://repositorio.fei.edu.br/handle/FEI/798

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Artigo de evento 0 Citação(ões) na Scopus
    Boosting the performance of MOSFET operating under a huge range of high temperature by using the octagonal layout style
    (2019-08-30) GALEMBECK, E. H. S.; SWART, J.; SILVA, G. A.; Salvador Gimenez
    © 2019 IEEE.This paper performs an experimental comparative study of a huge variation of temperature influence (from 300K to 573K) in planar Metal-Oxide-Semiconductor (MOS) Field-Effect-Transistors (MOSFETs), which are implemented with the octagonal (Octo MOSFETs, OM) and rectangular (Rectangular MOSFETs, RM) layout styles, regarding the same bias conditions. The devices were manufactured regarding a Complementary MOS (CMOS) Integrated Circuits (ICs) manufacturing process of 180 nm. The main results have shown that the OM is capable of keeping active the Longitudinal Corner Effect (LCE) and PArallel Connection of MOSFETs with Different Channel Lengths Effect (PAMDLE), which are intrinsic present in its structure, resulting a higher electrical performing in the relation to their RM counterparts, such as the OM saturation drain current (IDS_SAT) and transconductance (gm) are approximately three and two times, respectively, better as compared to those found in its RM counterpart. Therefore, the octagonal layout style for MOSFETs can be considered an alternative layout strategy to boost the electrical performance of the MOSFETs, without causing any additional burden to the CMOS ICs manufacturing process.
  • Artigo de evento 7 Citação(ões) na Scopus
    Boosting the ionizing radiation tolerance in the mosfets matching by using diamond layout style
    (2019-08-30) PERUZZI, V. V.; CRUZ, W. S. D.; SILVA, G. A. D.; TEIXEIRA, R. C.; SEIXAS JUNIOR, L. E.; Salvador Gimenez
    © 2019 IEEE.There are a lot of initiatives to improve the devices matching (dog bone layout, common centroid layout, dummy devices, etc.). Another layout technique, not yet used by integrated circuits (ICs) companies, is the utilization of non-conventional layout styles (hexagonal, octagonal, ellipsoidal, etc.) for MOSFETs, thanks to the Longitudinal Corner Effect (LCE), Parallel Connection of MOSFETs with different channel Lengths Effect (PAMDLE) and Deactivation of Parasitic MOSFETs in Bird's Beaks Regions (DEMPAMBBRE). In this context, this paper describes an experimental comparative study of the devices matching of Metal-Oxide-Semiconductor Field Effect Transistors (130 nm Silicon-Germanium Bulk), n-type (nMOSFETs) implemented with Diamond (hexagonal) and standard rectangular layout styles, regarding a sample of 189 transistors which were exposure to different X-rays ionizing radiations. Considering some relevant electrical parameters considered in this work, the results indicate that the Diamond layout style with α angle equal to 90° is capable of boosting by at least 40% the device matching in relation to one observed with standard (rectangular) MOSFET counterparts in irradiation environment, considering they present the same gate areas, channel widths and bias conditions. Therefore, the Diamond layout style can be considered another hardness-by-design (HBD) layout strategy to boost the electrical performance and ionizing radiation tolerance of MOSFETs.