Engenharia Mecânica
URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/23
Navegar
3 resultados
Resultados da Pesquisa
- Surface integrity and residual stresses analysis by strain gages after hard turning process of case hardened steel aisi 8620(2010) Farias A.; Delijaicov S.; De Mello J.D.B.; Filho M.S.; Batalha G.F.This work aims an analysis on the functional surface integrity resulting from turning mechanical components manufactured from case hardened steel AISI 8620 with 1 millimeter average layer depth and hardness of 58-62HRC. A cBN tool with PVD coat and Wiper geometry-edge was used for continuous turning of hardened steel, the cutting conditions (Vc [m/min] and f in [mm/rev]) used were concerned to reflect large running production of mechanical components. © (2010) Trans Tech Publications.
- Surface integrity analysis in the super duplex stainless steel ASTM-A890 after machining(2008) Bordinassi E.C.; Stipkovic M.F.; Batalha G.F.; Delijaicov S.; De Lima N.B.The purpose of this paper was to study the main effects of the turning in the superficial integrity of the duplex stainless steel ASTM A890-6A. The tests were conducted on a turning centre with carbide tools and the main entrances variables were: tool material class, feed rate, cutting depth, cutting speed and cutting fluid utilisation. The answers were analysed: microstructural analysis by optical microscopy and x-ray diffraction, cutting forces measurements by a piezoelectric dynamometer, surface roughness, residual stress by x-ray diffraction technique and the microhardness measurements. The results do not show any changes in the micro structural of the material, even when the greater cutting parameters were used. The smaller feed rate (0.1 mm/v), smaller cutting speed (110 m/min) and the greater cutting depth (0.5 mm) provided the smaller values for the tensile residual stress, the smaller surface roughness and the greater microhardness. Copyright © 2008 Inderscience Enterprises Ltd.
- The influence of turning parameters on surface integrity of nickel alloy 625(2018) Loureiro D.; Diniz A.E.; Farina A.B.; Delijaicov S.© IMechE 2016.Nickel-based alloys are used in industrial sectors where high mechanical strength and corrosion resistance are required at high temperatures. However, these alloys have low machinability as a consequence of inherent properties. Some of these properties such as high cold work hardening rate and low heat conductivity may cause damages to the machined surface. Among the nickel-based alloys, one that has good properties for oil exploration is alloy 625. As the components made of this alloy are frequently used in very rough environments, this study sought to evaluate the influence of tool geometry, cutting conditions (feed and cutting speed) and tool condition (fresh or worn) on the surface integrity of turned alloy 625 parts in order to discover turning practices for this alloy that result in minimal damage to the workpiece surface. A secondary aim was to evaluate how these input variables affected the life of the coated carbide tools used in the turning experiments with this alloy. The main conclusions are that (a) the surfaces produced with a fresh tool with positive geometry had compressive residual stresses, while those produced with negative tool geometry had tensile residual stresses and (b) when a worn tool was used all the surfaces produced had compressive residual stresses.