Repositório do Conhecimento Institucional do Centro Universitário FEI
 

Engenharia Elétrica

URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/21

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 4 de 4
  • Artigo 1 Citação(ões) na Scopus
    Temperature influence on the gate-induced floating body effect parameters in fully depleted SOI nMOSFETs
    (2008) AGOPIAN P. G. D.; MARTINO, J, A.; SIMOEN, E.; CLAEYS, C.
    The temperature influence on the gate-induced floating body effect (GIFBE) in fully depleted (FD) silicon-on-insulator (SOI) nMOSFETs is investigated, based on experimental results and two-dimensional numerical simulations. The GIFBE behavior will be evaluated taking into account the impact of carrier recombination and of the effective electric field mobility degradation on the second peak in the transconductance (gm). This floating body effect is also analyzed as a function of temperature. It is shown that the variation of the studied parameters with temperature results in a "C" shape of the threshold voltage corresponding with the second peak in the gm curve. © 2008 Elsevier Ltd. All rights reserved.
  • Artigo de evento 2 Citação(ões) na Scopus
    Impact of SEG on uniaxially strained MuGFET performance
    (2011-05-05) Paula Agopian; PACHECO, V. H.; MARTINO J. A.; SIMOEN, E.; CLAEYS, C.
    This work focuses on the impact of the source and drain Selective Epitaxial Growth (SEG) on the performance of uniaxially strained MuGFETs. With the channel length reduction, the normalized transconductance (gm.L/W) of unstressed MuGFETs decreases due to the series resistance and short channel effects (SCE), while the presence of uniaxial strain improves the gm. The competition between the series resistance (Rs) and the uniaxial strain results in a normalized gm maximum point for a specific channel length. Since the SEG structure influences both Rs and the strain in the channel, this work studies from room down to low temperature how these effects influence the performance of the triple-gate FETs. For lower temperatures, the strain-induced mobility enhancement increases and leads to a shift in the maximum point towards shorter channel lengths for devices without SEG. This shift is not observed for devices with SEG where the strain level is much lower. At 150 K the gm behavior of short channel strained devices with SEG is similar to the non SEG ones due to the better gm temperature enhancement for devices without SEG caused by the strain. For lower temperatures SEG structure is not useful anymore. © 2011 Elsevier Ltd. All rights reserved.
  • Artigo 3 Citação(ões) na Scopus
    Stress engineering and proton radiation influence on off-state leakage current in triple-gate SOI devices
    (2013-01-05) AGOPIAN, P. G. D.; BORDALLO, C. C. M.; SIMOEN, E.; CLAEYS, C.; MARTINO, J. A.
    In this work the influence of different stress techniques and proton irradiation on the off-state leakage current is investigated for p- and n-channel Multiple Gate MOSFETs (MuGFETs). Four different splits are evaluated: unstrained, uniaxially stressed, biaxially stressed and the combination of both types of stress. For nMuGFETs, the higher the stress effectiveness the higher is the GIDL due to band gap narrowing. However for p-channel devices, the gate leakage current is higher than band-to-band tunneling and it dominates the drain current in the off-state region. After proton irradiation all the n-channel devices present a worse behavior. Off-state leakage current for nMuGFETs was degraded by radiation due to the increase of the back gate leakage current generated by the increase of the interface charge density at the back interface. For p-channel devices, the radiation did not show any influence in off-state leakage current, since the gate oxide thickness is very thin and therefore the radiation has no influence on the gate current, which is the dominant effect in the pMuGFETs off-state region. © 2013 Elsevier Ltd. All rights reserved.
  • Artigo 42 Citação(ões) na Scopus
    Evaluation of triple-gate FinFETs with SiO2-HfO2-TiN gate stack under analog operation
    (2007) Marcelo Antonio Pavanello; MARTINO, J. A.; SIMOEN, E.; ROOYACKERS, R.; COLLAERT, N.; CLAEYS, C.
    This work presents the analog performance of nMOS triple-gate FinFETs with high-κ dielectrics, TiN gate material and undoped body from DC measurements. Different fin widths and devices with and without halo implantation are explored. No halo FinFETs can achieve extremely large gain and improved unity gain frequency at similar channel length than halo counterparts. The FinFETs with 110 nm long channel achieve an intrinsic gain of 25 dB. Extremely large Early voltages have been measured on long channel nMOS with no halo and relatively wide fins compared to the results usually reported in the literature. The large Early voltage obtained suggests that the devices operate in the onset of volume inversion due to the low doping level of the device body. © 2007 Elsevier Ltd. All rights reserved.