Repositório do Conhecimento Institucional do Centro Universitário FEI
 

Engenharia Elétrica

URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/21

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 2 de 2
  • Imagem de Miniatura
    Artigo 17 Citação(ões) na Scopus
    Thin-film lateral SOI pin diodes for thermal sensing reaching the cryogenic regime
    (2010-09-01) Michelly De Souza; RUE, B.; FLANDRE, D.; Marcelo Antonio Pavanello
    This paper presents the performance of lateral SOI PIN diodes for temperature sensing in the range of 100 K to 400 K. Experimental results indicate that PIN diodes can be used to implement temperature sensors with high accuracy in cryogenic regime, provided that a suitable temperature range is chosen for calibration. Numerical simulations using Atlas two-dimensional simulator were performed in order to confirm this hypothesis and extend the analysis, verifying the accuracy of the existing model.
  • Artigo 4 Citação(ões) na Scopus
    Fin cross-section shape influence on short channel effects of mugfets
    (2012-05-05) BUHLER, R. T.; Giacomini R.; Marcelo Antonio Pavanello; Joao Antonio Martino
    Multiple-gate FETs is normally constructed on pre-etched silicon fins. These devices often present casual width variations along the silicon height; mostly caused by technological limitations of the fin definition process, due to non-ideal anisotropic etch. The resulting devices have, consequently, non-rectangular cross-sections, which can affect their electrical behavior. This work addresses the dependence of fin width non-uniformity on the occurrence of short-channel effects through comparative analysis, based on threedimensional numeric simulation of non-rectangular cross-section devices. The influence of the fin crosssection shape on electrical parameters showed to be dependent on channel length, becoming more sensible to the fin shape as the channel length is reduced, with better DC performance present on devices with bottom fin width smaller than top fin width due to the higher transconductance and lower output conductance, resulting on higher intrinsic voltage gain. For opposite fin shapes the total gate capacitance present higher values, beneficiating AC analog parameters, such as unit gain frequency.