Departamento de Física
URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/785
Navegar
3 resultados
Resultados da Pesquisa
- Experimental setup for Single Event Effects at the São Paulo 8UD Pelletron Accelerator(2014) Aguiar V.A.P.; Added N.; Medina N.H.; Macchione E.L.A.; Tabacniks M.H.; Aguirre F.R.; Silveira M.A.G.; Santos R.B.B.; Seixas Jr. L.E.In this work we present an experimental setup mounted in one of the beam lines at the São Paulo 8UD Pelletron Accelerator in order to study Single Event Effects in electronic devices. The basic idea is to use elastic scattering collisions to achieve a low-flux with a high-uniformity ion beam to irradiate several devices. 12C, 16O, 28Si, 35Cl and 63Cu beams were used to test the experimental setup. In this system it is possible to use efficiently LET values of 17 MeV/mg/cm2 for an external beam arrangement and up to 32 MeV/mg/cm2 for in-vacuum irradiation. © 2014 Elsevier B.V. All rights reserved.
- Comparative study of the proton beam effects between the conventional and Circular-Gate MOSFETs(2012) Cirne K.; Silveira M.A.G.; Santos R.B.B.; Gimenez S.P.; Barbosa M.D.L.; Tabacniks M.H.; Added N.; Medina N.H.; De Melo W.R.; Seixas Jr. L.E.; De Lima J.A.The study of ionizing radiation effects on semiconductor devices is of great relevance for the global technological development and is a necessity in some strategic areas in Brazil. This work presents preliminary results of radiation effects in MOSFETs that were exposed to 3.2 Grad radiation dose produced by a 2.6-MeV proton beam. The focus of this work was to electrically characterize a Rectangular-Gate MOSFET (RGT) and a Circular-Gate MOSFET (CGT), manufactured with the On Semiconductor 0.5 μm standard CMOS fabrication process and to verify a suitable geometry for space applications. During the experiment, I DS × V GS curves were measured. After irradiation, the RGT off-state current (I OFF) increased approximately two orders of magnitude reaching practically the same value of the I OFF in the CGT, which only doubled its value. © 2011 Elsevier B.V. All rights reserved.
- Performance of electronic devices submitted to X-rays and high energy proton beams(2012) Silveira M.A.G.; Cirne K.H.; Santos R.B.B.; Gimenez S.P.; Medina N.H.; Added N.; Tabacniks M.H.; Barbosa M.D.L.; Seixas L.E.; Melo W.; De Lima J.A.In this work we have studied the radiation effects on MOSFET electronic devices. The integrated circuits were exposed to 10 keV X-ray radiation and 2.6 MeV energy proton beam. We have irradiated MOSFET devices with two different geometries: rectangular-gate transistor and circular-gate transistor. We have observed the cumulative dose provokes shifts on the threshold voltage and increases or decreases the transistor's off-state and leakage current. The position of the trapped charges in modern CMOS technology devices depends on radiation type, dose rate, total dose, applied bias and is a function of device geometry. We concluded the circular-gate transistor is more tolerant to radiation than the rectangular-gate transistor. © 2011 Elsevier B.V. All rights reserved.