Departamento de Física
URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/785
Navegar
3 resultados
Resultados da Pesquisa
- Modeling of MOSFETs Altered by Ionizing Radiation Using Artificial Neural Networks(2023-08-05) SANTOS, L. S. A. DOS; ALLEGRO, P. R. P.; Marcilei Aparecida Guazzelli; GUIDI, A. L.; G. JUNIOR, P. R.; A. JUNIOR, V. S.; TOUFEN, D. L.; VILAS BOAS, A. C.© 2023, The Author(s) under exclusive licence to Sociedade Brasileira de Física.The ionizing radiation absorbed by semiconductor devices can change their properties by modifying their electrical parameters and, in the case of memories, it can modify the information contained in these components. Thus, the ability to predict how ionizing radiation affects electronic circuits becomes especially important in environments where there is the possibility of prolonged exposure to intense radiation, such as satellites, nuclear reactors, particle accelerators, and medical equipment, among others. In this sense, this paper proposes a methodology to reproduce the behavior of TID (total ionizing dose) damaged MOSFET transistors using the fully connected artificial neural networks, taking advantage of its universal estimator characteristics to oversample the dataset’s pattern and give it a better resolution. The dataset complexity requires a specific architecture choice, being necessary the use of two neural network models to separately reproduce the MOSFET electric current magnitude order and its curve shape. Results show a very good capability to reproduce and interpolate the MOSFET behavior, which makes the proposed method a promising way to simulate circuits based on MOSFETs that are exposed to ionizing radiation.
- Analysis of FPGA SEU sensitivity to combined effects of conducted EMI and TID(2016-05-17) BENFICA, J.; GREEN, B.; PORCHER, B. C.; POEHLS, L. B.; VARGAS, F.; MEDINA, N. H.; ADDED, N.; AGUIAR, V. A. P. DE; MACCHIONE, E. L. A.; AGUIRRE, F.; Marcilei Aparecida Guazzelli© 2016 IEEE.This work proposes a novel methodology to evaluate SRAM-Based FPGA SEU susceptibility to noise on VDD power pins and total-ionizing dose (TID). The procedure was demonstrated for SEU measurements on a Xilinx Spartan 3E FPGA operating in an 8MV Pelletron accelerator, whereas TID was deposited by means of a Shimadzu XRD-7000 X-ray diffractometer. The injected noise on power supply bus comprised of voltage dips of 16.67% and 25% of VDD at two different frequencies 10Hz and 5kHz, and was performed according to the IEC 61.000-4-29 international standard.
- Analysis of SRAM-Based FPGA SEU Sensitivity to Combined EMI and TID-Imprinted Effects(2016) Benfica J.; Green B.; Porcher B.C.; Poehls L.B.; Vargas F.; Medina N.H.; Added N.; De Aguiar V.A.P.; Macchione E.L.A.; Aguirre F.; Silveira M.A.G.; Perez M.; Sofo Haro M.; Sidelnik I.; Blostein J.; Lipovetzky J.; Bezerra E.A.© 2016 IEEE.This work proposes a novel methodology to evaluate SRAM-based FPGA's susceptibility with respect to Single-Event Upset (SEU) as a function of noise on VDD power pins, Total-Ionizing Dose (TID) and TID-imprinted effect on BlockRAM cells. The proposed procedure is demonstrated for SEU measurements on a Xilinx Spartan 3E FPGA operating in an 8 MV Pelletron accelerator for the SEU test with heavy-ions, whereas TID was deposited by means of a Shimadzu XRD-7000 X-ray diffractometer. In order to observe the TID-induced imprint effect inside the BlockRAM cells, a second SEU test with neutrons was performed with Americium/Beryllium (241 AmBe). The noise was injected into the power supply bus according to the IEC 61.000-4-29 standard and consisted of voltage dips with 16.67% and 25% of the FPGA's VDD at frequencies of 10 Hz and 5 kHz, respectively. At the end of the experiment, the combined SEU failure rate, given in error/bit.day, is calculated for the FPGA's BlockRAM cells. The combined failure rate is defined as the average SEU failure rate computed before and after exposition of the FPGA to the TID.