JOTUN
Carregando...
Citações na Scopus
Tipo de produção
Trabalho de Conclusão de Curso
Data
2021-06-23
Autores
Moraes, Filipe Faria de
Lech, Gabriela Torres Grande
Bortali, Luca Pivato
Silva, Lucas Galdino da
Brito, Lucas Pereira
Cruz, Orlito Nunes da
Moreira, Pedro de Oliveira
Oliveira, Rafael Velho de
Lech, Gabriela Torres Grande
Bortali, Luca Pivato
Silva, Lucas Galdino da
Brito, Lucas Pereira
Cruz, Orlito Nunes da
Moreira, Pedro de Oliveira
Oliveira, Rafael Velho de
Orientador
Gomes, Cleber Willian
Periódico
Título da Revista
ISSN da Revista
Título de Volume
Citação
Texto completo (DOI)
Palavras-chave
veículo elétrico,temperatua,inversor,autonomia,motor elétrico,electric vehicle,electric motor,inverter,temperature,autonomy
Resumo
Por volta de 1800, quando ainda não existia o conhecido carro a combustão, a ideia do veículo elétrico já seria criada. Porém esta ideia ainda teria muitas dificuldades para ser implementada, sendo superada pelo veículo movido a combustão interna que se mantém presente na sociedade no século 21. Após anos de estudos e desenvolvimento tecnológico, a montadora de veículos Toyota lançou em 1997 o primeiro veículo híbrido produzido em massa no Japão ajudando a crescer a imagem do veículo movido a energia elétrica no mundo. Em 2006, uma pequena startup do vale do silício, Tesla Motors, começa a produzir carros totalmente elétricos e luxuosos que conseguem rodar 322 quilômetros em uma única carga. Com isso, a indústria começou a aquecer e o desenvolvimento de veículos movidos a energia elétrica cresce mais a cada dia. Logo, com a crescente do mercado, o desenvolvimento sobre veículos elétricos se torna necessário e, com isso, dificuldades e desafios se tornam cada vez mais aparentes. O conjunto de propulsão deste tipo de veículo é composto principalmente pelo motor elétrico e pelo inversor, estes que transformam a energia elétrica proveniente das baterias em energia cinética movimentando o veículo, e quando existe a conversão de energia existe também a perda, afetando assim eficiência destes componentes, o que afeta diretamente a autonomia do veículo em geral. A grande questão apresentada no estudo leva em consideração que ambos os componentes possuem divergentes faixas de eficiência em função da temperatura, tornando-se o ponto de melhoria focal deste projeto. Por conta disso, o trabalho leva em consideração a criação de um sistema de arrefecimento que possibilite temperaturas de operação diferentes em cada componente e a estabilização delas pelo maior período possível, podendo assim minimizar as perdas térmicas presentes no sistema para gerar melhoras na eficiência de cada componente e, consequentemente, melhorar a eficiência global do veículo e a autonomia por carga. Portanto, será apresentado neste estudo tendências futuras para certificação da relevância dos assuntos tratados, e, por fim, o desenvolvimento e cálculos realizados para confirmação das expectativas apresentadas.
Around 1800, when the well-known combustion car did not exist, the idea of the electric vehicle would be created. However, this idea would still have many difficulties to be implemented, being overcome by the internal combustion vehicle that remains present insocietyin the 21st century. After years of studies and technological development, ToyotaMotor Corporationlaunched in 1997 the first mass-producedhybrid vehicle in Japan, helping to grow the image of the electric-powered vehicle inthe world. In 2006, a small Startupfrom Silicon Valley, Tesla Motors, starts producing fully electric and luxurious cars that can run 322 kilometers on a single charge. As a result, the industry started to heat up and the development of vehicles powered by electric energy grows more every day. Soon with the growing market, the development of electric vehicles becomes necessary and with this difficulties and challenges become more and more apparent. The propulsion set of this type of vehicle is mainly composed bythe electricengineand the inverter, which transform the electric energy from the batteries into kinetic energy moving the vehicle, and when there is energy conversion there is also loss, thus affecting their efficiency, which impacts directly the range of the vehicle in general. The major issue presented in the study considersthat both components have different efficiency ranges as a function of temperature, becoming the focal point of improvement for this project. For this reason, the work takes into account the creation of a cooling system thatallows different operating temperatures in each componentand their stabilization for the longest possible period, thus being able to minimize the thermal losses present in the system to generate improvements in the efficiency of each component and consequently improve the overall efficiency of the vehicle and the range per charge.Therefore, in this study, future trends will be presented to certify the relevance of the mattersdealt with, and, finally, the development and calculations carried out to confirm the expectations presented.
Around 1800, when the well-known combustion car did not exist, the idea of the electric vehicle would be created. However, this idea would still have many difficulties to be implemented, being overcome by the internal combustion vehicle that remains present insocietyin the 21st century. After years of studies and technological development, ToyotaMotor Corporationlaunched in 1997 the first mass-producedhybrid vehicle in Japan, helping to grow the image of the electric-powered vehicle inthe world. In 2006, a small Startupfrom Silicon Valley, Tesla Motors, starts producing fully electric and luxurious cars that can run 322 kilometers on a single charge. As a result, the industry started to heat up and the development of vehicles powered by electric energy grows more every day. Soon with the growing market, the development of electric vehicles becomes necessary and with this difficulties and challenges become more and more apparent. The propulsion set of this type of vehicle is mainly composed bythe electricengineand the inverter, which transform the electric energy from the batteries into kinetic energy moving the vehicle, and when there is energy conversion there is also loss, thus affecting their efficiency, which impacts directly the range of the vehicle in general. The major issue presented in the study considersthat both components have different efficiency ranges as a function of temperature, becoming the focal point of improvement for this project. For this reason, the work takes into account the creation of a cooling system thatallows different operating temperatures in each componentand their stabilization for the longest possible period, thus being able to minimize the thermal losses present in the system to generate improvements in the efficiency of each component and consequently improve the overall efficiency of the vehicle and the range per charge.Therefore, in this study, future trends will be presented to certify the relevance of the mattersdealt with, and, finally, the development and calculations carried out to confirm the expectations presented.