Superficial residual stress, microstructure, and efficiency in similar joints of AA2024-T3 and AA7475-T761 aluminum alloys formed by friction stir welding

dc.contributor.authorPERANDINI, J. P. B.
dc.contributor.authorEd Claudio Bordinassi
dc.contributor.authorBATALHA, M. H. F.
dc.contributor.authorCARUNCHIO, A. F.
dc.contributor.authorSergio Delijaicov
dc.contributor.authorOrcidhttps://orcid.org/0000-0001-5621-9536
dc.contributor.authorOrcidhttps://orcid.org/0000-0002-3915-3077
dc.date.accessioned2022-01-12T21:53:42Z
dc.date.available2022-01-12T21:53:42Z
dc.date.issued2021-09-05
dc.description.abstract© 2021, The Author(s), under exclusive licence to Springer-Verlag London Ltd., part of Springer Nature.Friction stir welding (FSW) represents a conceptually simple technique that consists of joining either similar or dissimilar solid-state materials through higher plastic deformation rates. FSW is an important technique in the aeronautical and aerospace industries, and its development is vital because of the significant difficulty in joining higher resistance AA 2000 and AA 7000 aluminum alloys with conventional techniques, like fusion welding, due to porosity and mechanical property losses. Thin sheets with a 1.6-mm nominal thickness of AA2024, heat treated to condition T3, and thin sheets with a 1.6-mm nominal thickness of AA7475, heat treated to condition T761, were used to investigate the influence of welding parameters under superficial residual stress and the efficiency of joints by FSW of AA2024-T3 and AA7475-T761 aluminum alloys. A central composite design (CCD) was used as a statistical model in this study (23 factorial points, six stellar points, two central points, and two replicas). Micrographic analysis showed that in the nugget zone of the AA7475-T761 alloy, there was hardness recovery. The fractography images showed that failures occurred mainly due to the joint line remnant defect, evidenced by the presence of cracks. The superficial residual stresses show a maximum value of 81 MPa at the advancing side in run 27 (hot welding) of AA2024-T3, whereas in AA7475-T761, a value of 57 MPa was found in the same run. Finally, tensile strength represents an efficiency of ~92% of the AA2024-T3 base metal value, while for AA7475-T761, this value was ~85%. From a component design perspective, the parameter window of this study is identified as interesting for its evaluation in the possible application in component manufacturing, due to the low values of superficial residual stresses found compared to those in previous work.
dc.description.firstpage117
dc.description.issuenumber1-2
dc.description.lastpage136
dc.description.volume116
dc.identifier.citationPERANDINI, J. P. B.; BORDINASSI, E. C.; BATALHA, M. H. F.; CARUNCHIO, A. F.; DELIJAICOV. S. Superficial residual stress, microstructure, and efficiency in similar joints of AA2024-T3 and AA7475-T761 aluminum alloys formed by friction stir welding. International Journal of Advanced Manufacturing Technology, v. 116, n. 1-2, p. 116-138, sept. 2021.
dc.identifier.doi10.1007/s00170-021-07238-5
dc.identifier.issn1433-3015
dc.identifier.urihttps://repositorio.fei.edu.br/handle/FEI/3558
dc.relation.ispartofInternational Journal of Advanced Manufacturing Technology
dc.rightsAcesso Restrito
dc.subject.otherlanguageAluminum
dc.subject.otherlanguageDesign of experiment
dc.subject.otherlanguageFriction stir welding
dc.subject.otherlanguageSuperficial residual stresses
dc.titleSuperficial residual stress, microstructure, and efficiency in similar joints of AA2024-T3 and AA7475-T761 aluminum alloys formed by friction stir welding
dc.typeArtigo
fei.scopus.citations2
fei.scopus.eid2-s2.0-85106517341
fei.scopus.subjectCentral composite designs
fei.scopus.subjectComponent manufacturing
fei.scopus.subjectConventional techniques
fei.scopus.subjectFriction stir welding(FSW)
fei.scopus.subjectMicrographic analysis
fei.scopus.subjectNominal thickness
fei.scopus.subjectStatistical modeling
fei.scopus.subjectWelding parameters
fei.scopus.updated2024-07-01
fei.scopus.urlhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85106517341&origin=inward
Arquivos
Coleções