Electron-phonon superconductivity in C-doped topological nodal-line semimetal Zr5Pt3: A muon spin rotation and relaxation (μSR) study

dc.contributor.authorBHATTACHARYYA, A.
dc.contributor.authorFERREIRA, P. P.
dc.contributor.authorPANDA, K.
dc.contributor.authorS. H. Masunaga
dc.contributor.authorDE FARIA, L. R.
dc.contributor.authorCORREA, L. A.
dc.contributor.authorSANTOS, F. B.
dc.contributor.authorADROJA, D. T.
dc.contributor.authorYOKOYAMA, K.
dc.contributor.authorDORINI, T. T.
dc.contributor.authorJARDIM, R. F.
dc.contributor.authorELENO, L. T. F.
dc.contributor.authorMACHADO, A. J. S.
dc.contributor.authorOrcidhttps://orcid.org/0000-0002-3796-8029
dc.date.accessioned2022-01-16T18:58:44Z
dc.date.available2022-01-16T18:58:44Z
dc.date.issued2022-01-19
dc.description.abstract© 2021 IOP Publishing Ltd Printed in the UKIn the present work, we demonstrate that C-doped Zr5Pt3 is an electron-phonon superconductor (with critical temperature TC = 3.8 K) with a nonsymmorphic topological Dirac nodal-line semimetal state, which we report here for the first time. The superconducting properties of Zr5Pt3C0.5 have been investigated by means of magnetization, resistivity, specific heat, and muon spin rotation and relaxation (μSR) measurements. We find that at low temperatures, the depolarization rate is almost constant and it can be well described by a single-band s-wave model with a superconducting gap of 2Δ(0)/kBTC = 3.84, somewhat higher than the value of BCS theory. From the transverse field μSR analysis, we estimate the London penetration depth λL = 469 nm, superconducting carrier density ns = 1.83 × 1026 m−3, and effective mass m∗ = 1.428me. The zero field μSR confirms the absence of any spontaneous magnetic field in the superconducting ground state. In order to gain additional insights into the electronic ground state of C-doped Zr5Pt3, we also performed first-principles calculations within the framework of density functional theory (DFT). The observed homogenous electronic character of the Fermi surface as well as the mutual decrease of TC and density of states at the Fermi level are consistent with the experimental findings of this study. However, the band structure reveals the presence of robust, gapless fourfold-degenerate nodal lines protected by 63 screw rotations and glide mirror planes. Therefore, Zr5Pt3 represents a novel, unprecedented condensed matter system to investigate the intricate interplay between superconductivity and topology.
dc.description.issuenumber3
dc.description.volume34
dc.identifier.citationBHATTACHARYYA, A.; FERREIRA, P. P. ; PANDA, K.; MASUNAGA, S. H.; DE FARIA, L. R.; CORREA, L. A.; SANTOS, F. B.; ADROJA, D. T.; YOKOYAMA, K.; DORINI, T. T.; JARDIM, R. F.; ELENO, L. T. F.; MACHADO, A. J. S. Electron-phonon superconductivity in C-doped topological nodal-line semimetal Zr5Pt3: A muon spin rotation and relaxation (μSR) study. Journal of Physics Condensed Matter, v. 34, n. 3, January, 2022.
dc.identifier.doi10.1088/1361-648X/ac2bc7
dc.identifier.issn0953-8984
dc.identifier.urihttps://repositorio.fei.edu.br/handle/FEI/4382
dc.relation.ispartofJournal of Physics Condensed Matter
dc.rightsAcesso Restrito
dc.subject.otherlanguageMuon spin rotation
dc.subject.otherlanguageRelaxation
dc.subject.otherlanguageSuperconductivity
dc.titleElectron-phonon superconductivity in C-doped topological nodal-line semimetal Zr5Pt3: A muon spin rotation and relaxation (μSR) study
dc.typeArtigo
fei.scopus.citations8
fei.scopus.eid2-s2.0-85119484651
fei.scopus.subjectC-doped
fei.scopus.subjectCritical temperatures
fei.scopus.subjectElectron phonon
fei.scopus.subjectLows-temperatures
fei.scopus.subjectMuon spin rotation
fei.scopus.subjectMuon spin rotation and relaxation
fei.scopus.subjectNodal line
fei.scopus.subjectRelaxation
fei.scopus.subjectSingle band
fei.scopus.subjectSuperconducting properties
fei.scopus.updated2024-05-01
fei.scopus.urlhttps://www.scopus.com/inward/record.uri?partnerID=HzOxMe3b&scp=85119484651&origin=inward
Arquivos
Coleções