Parkinson's disease EMG signal prediction using neural networks

Nenhuma Miniatura disponível
Citações na Scopus
14
Tipo de produção
Artigo de evento
Data
2019-10-05
Autores
ZANINI, R. A.
COLOMBINI, E. L.
Castro, M.C.F.
Orientador
Periódico
Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics
Título da Revista
ISSN da Revista
Título de Volume
Citação
ZANINI, R. A.; COLOMBINI, E. L.; CASTRO, M. C. F. Parkinson's disease EMG signal prediction using neural networks. Conference Proceedings - IEEE International Conference on Systems, Man and Cybernetics, p. 2446 - 2453, oct. 2019.
Texto completo (DOI)
Palavras-chave
Resumo
© 2019 IEEE.This paper proposes a comparison between different neural network models, using multilayer perceptron (MLPs) and recurrent neural network (RNN) models, for predicting Parkinson's disease electromyography (EMG) signals, to anticipate resulting resting tremor patterns. The experimental results indicate that the proposed models can adapt to different frequencies and amplitudes of tremor, and provide reasonable predictions for both EMG envelopes and EMG raw signals. Therefore, one could use these models as input for a control strategy for functional electrical stimulation (FES) devices used on tremor suppression, by dynamically predicting and improving FES control parameters based on tremor forecast.

Coleções