Repositório do Conhecimento Institucional do Centro Universitário FEI
 

A multi-linear discriminant analysis of 2D frontal face images

N/D

Tipo de produção

Artigo de evento

Data de publicação

2009-10-11

Texto completo (DOI)

Periódico

Proceedings of SIBGRAPI 2009 - 22nd Brazilian Symposium on Computer Graphics and Image Processing

Editor

Citações na Scopus

2

Autores

Carlos E. Thomaz
DO AMARAL, V.
GIRALDI, G. A.
KITANI, E. C.
SATO, J. R.
GILLES, D. F.

Orientadores

Resumo

We have designed and implemented a multi-linear discriminant method of constructing and quantifying statistically significant changes on human identity photographs. The method is based on a general multivariate two-stage linear framework that addresses the small sample size problem in high-dimensional spaces. Starting with a 2D face data set of well framed images, we determine a most characteristic direction of change by organizing the data according to the features of interest. Our goal here is to use all the facial image features simultaneously rather than separate models for texture and shape information. Our experiments show that the method does produce plausible unseen views for gender, facial expression and ageing changes. We believe that this method could be widely applied for normalization in face recognition and in identifying subjects after a lapse of time. © 2009 IEEE.

Citação

THOMAZ, C. E.; DO AMARAL, V.; GIRALDI, G. A.; KITANI, E. C.; SATO, J. R.; GILLES, D. F. A multi-linear discriminant analysis of 2D frontal face images. Proceedings of SIBGRAPI 2009 - 22nd Brazilian Symposium on Computer Graphics and Image Processing, p. 216-223, Oct. 2009.

Palavras-chave

Keywords

Assuntos Scopus

Face data; Facial Expressions; Facial images; Frontal faces; High dimensional spaces; Human identity; Linear discriminant analysis; Linear discriminants; Shape information; Small sample size problems; Two stage

Coleções

Avaliação

Revisão

Suplementado Por

Referenciado Por