Learning to select object recognition methods for autonomous mobile robots

Nenhuma Miniatura disponível
Citações na Scopus
2
Tipo de produção
Artigo de evento
Data
2008-07-25
Autores
Reinaldo Bianchi
RAMISA, A.
MANTARAS, R. L .
Orientador
Periódico
Frontiers in Artificial Intelligence and Applications
Título da Revista
ISSN da Revista
Título de Volume
Citação
BIANCHI, R.; RAMISA, A.; MANTARAS, R. L. Learning to select object recognition methods for autonomous mobile robots. Frontiers in Artificial Intelligence and Applications, v. 178, p. 927-928, July, 2008.
Texto completo (DOI)
Palavras-chave
Resumo
© 2008 The authors and IOS Press. All rights reserved.Selecting which algorithms should be used by a mobile robot computer vision system is a decision that is usually made a priori by the system developer, based on past experience and intuition, not systematically taking into account information that can be found in the images and in the visual process itself to learn which algorithm should be used, in execution time. This paper presents a method that uses Reinforcement Learning to decide which algorithm should be used to recognize objects seen by a mobile robot in an indoor environment, based on simple attributes extracted on-line from the images, such as mean intensity and intensity deviation. Two state-of-the-art object recognition algorithms can be selected: the constellation method proposed by Lowe together with its interest point detector and descriptor, the Scale-Invariant Feature Transform and a bag of features approach. A set of empirical evaluations was conducted using a household mobile robots image database, and results obtained shows that the approach adopted here is very promising.

Coleções