Nanoeletrônicos e Circuitos Integrados
URI Permanente desta comunidade
Navegar
Navegando Nanoeletrônicos e Circuitos Integrados por Orientador "Castro, M. C. F."
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
Dissertação Protótipo inteligente de prótese mioelétrica de mão de baixo custo auxiliada por sistema de visão(2020) Rigolin, GlaucoTendo em vista as necessidades de pessoas com amputação de membros superiores, é proposto, neste trabalho, o desenvolvimento de um protótipo de prótese de mão de baixo custo, operando em conjunto com uma rede neural para reconhecimento de objetos presentes no cotidiano para definir o padrão de preensão a ser executado, e de um sistema de Eletromiografia de superfície (sEMG) para comandar o acionamento dos motores da prótese. A prótese foi construída com material chamado de ácido polilático (PLA) e impressa em uma impressora Voolt 3D GI3. A rede neural convolucional Visual Geometry Group (VGG) foi escolhida para a classificação dos objetos e foi modificada para operar no microcomputador Raspberry Pi 3 (RPI3), que foi conectado a uma webcam. Foram utilizados os softwares Keras, como interface de programação de aplicativos, e TensorFlow, como software de computação numérica. Por meio de um banco de imagens de objetos de uso diário, a rede neural foi treinada para a classificação dos objetos, em função do tipo de preensão necessário para pegá-los, em cinco classes: Potência Punho Neutro, Potência Punho Pronado, Pinça de três pontos, Extensão do Indicador e Preensão Lateral. A imagem capturada do objeto que se deseja manusear é classificada pela rede neural e, por meio do sinal dos sensores de sEMG, o microcomputador Raspberry Pi comanda o fechamento e abertura da prótese para a correta manipulação do objeto. A prótese de mão proposta obteve 100% de acurácia para a preensão de objetos da classe potência com punho neutro, 99% de acurácia para a preensão de objetos da classe potência com punho pronado, 98% de acurácia para a preensão de objetos da classe pinça de três pontos, 99% de acurácia para a preensão de objetos da classe preensão lateral e 99% de acurácia para o uso da classe extensão do indicador