Nanoeletrônicos e Circuitos Integrados
URI Permanente desta comunidade
Navegar
Navegando Nanoeletrônicos e Circuitos Integrados por Assunto "Amplificador operacional de transcondutância (OTA)"
Agora exibindo 1 - 1 de 1
Resultados por página
Opções de Ordenação
Tese Otimização de projetos de circuitos integrados cmos analógicos utilizando-se o imtgspice, otas cascateados e mosfets do tipo diamante(2022) Banin Júnior, J. R.O projeto de circuitos integrados (CIs) Metal-Óxido-Semicondutor Complementar (Complementary Metal-Oxide-Semiconductor, CMOS) analógicos robustos é um processo muito complexo e demorado, pois envolve muitas variáveis de entrada e muitas variáveis de saída (especificações) que devem ser atendidas todas ao mesmo tempo. Ou seja, trata-se de um sistema complexo de otimização, que pode ser resolvido de uma maneira mais ágil por meio do uso de técnicas heurísticas de inteligência artificial (IA). Dentro deste contexto, a motivação deste projeto de pesquisa é desenvolver uma metodologia para projetar e otimizar CIs CMOS analógicos robustos com os MOSFETs do tipo Diamante de forma automática. Isso foi realizado por meio do desenvolvimento de um modelo analítico que leva em conta os efeitos intrínsecos a sua estrutura: Efeito de Canto Longitudinal (Longitudinal Corner Effect, LCE) e Efeito das Conexões Paralelas dos MOSFETs com Comprimentos de Canal Diferentes (Parallel Connections of MOSFETs with Different Channel Lenghts Effect, PAMDLE), para que seja possível a realização de simulações SPICE com esses dispositivos. Esses efeitos são capazes de potencializar sua corrente de dreno em relação a de um MOSFET com geometria de porta retangular de mesma área de porta e mesmas condições de polarização. Esse modelo analítico foi incorporado à ferramenta computacional de projeto e otimização de CIs CMOS analógicos e de radiofrequência, que integra metodologias heurísticas de IA à inteligência humana (IH), por meio da expertise do projetista. Além disso, foi desenvolvida uma metodologia para transformar MOSFETs do tipo retangular em MOSFETs do tipo Diamante, levando-se em conta que eles apresentam as mesmas correntes de dreno e respeitando-se todas as regras de leiaute pertinentes a um processo de fabricação de CIs CMOS. Para validar o modelo analítico SPICE do MOSFET do tipo Diamante e a metodologia desenvolvido para a transformação de MOSFETs convencionais (Conventional MOSFETs, CMs) em transistores do tipo Diamante (Diamond MOSFETs, DMs), dois projetos de amplificadores operacionais de transcondutância (Operational Transconductance Amplifiers, OTAs) foram realizados, sendo o primeiro um OTA de um único estágio e uma única saída (Single Ended- Single Stage, SESS) e o segundo um OTA Miller. Os resultados mostraram que a metodologia proposta pode ser considerada uma alternativa para o desenvolvimento de CIs CMOS robustos com o uso de MOSFETs do tipo Diamante, com um erro máximo entre os OTAs SESS e Miller implementados com CMs e os OTAs SESS e Miller implementados com DMs, de até 3% para todas as figuras de mérito avaliadas [ganho de tensão em malha aberta (AV0), tensão de saída (VOUT), margem de fase (MF), frequência de ganho de tensão unitário (fT) e potência dissipada (PTOT)]. Por exemplo, a utilização da metodologia reduz significativamente a área de porta (AG) total em até 43% para o OTA Miller implementado com DMs (ângulo a igual a 45º) em comparação ao OTA Miller implementado com CMs. Um segundo estudo também foi realizado para mostrar que o projeto de amplificadores em cascata feitos com amplificadores previamente otimizados apresenta uma menor performance elétrica e podem limitar suas aplicações do que aqueles implementados sem que estejam otimizados anteriormente. Os resultados mostram que o desempenho elétrico com essa abordagem é aumentado em 2,2% para AV0 e 22,7% para a frequência de corte (fC) em comparação ao desempenho elétrico de amplificadores em cascata que são implementados com blocos previamente otimizados. Além disso, a aplicação da segunda metodologia pode reduzir AG em 44,6% em relação àquele observado utilizando-se a metodologia tradicional. Além disso, o amplificador avaliado com a segunda metodologia proposta é capaz de operar em uma faixa de temperatura muito maior (entre -40oC e 125oC) enquanto que o amplificador avaliado com metodologia tradicional opera entre 0oC e 36oC. Portanto, pode-se concluir que as duas metodologias aqui apresentadas podem ser consideradas uma alternativa para apoiar os projetistas de CIs CMOS analógicos para melhorar o desempenho elétrico e a robustez, reduzir os tempos de desenvolvimento de projeto e de otimização e a área total de porta dos amplificadores