Repositório do Conhecimento Institucional do Centro Universitário FEI
 

Artigos

URI permanente para esta coleçãohttps://repositorio.fei.edu.br/handle/FEI/798

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 3 de 3
  • Artigo 5 Citação(ões) na Scopus
    Low-frequency noise of n-type triple gate FinFETs fabricated on standard and 45 rotated substrates
    (2013) Doria R.T.; Martino J.A.; Simoen E.; Claeys C.; Pavanello M.A.
    This paper studies the impact of the 45 substrate rotation on the low-frequency noise (LFN) of triple gate nFinFETs. The overall LFN has been extracted for both standard and 45 substrate rotated devices of several fin widths at different drain and gate voltage biases focusing on their operation in saturation regime. A general view of the mechanisms which govern the low-frequency noise in MOS devices is provided and a brief discussion on the physical origins of the LFN in the evaluated devices is carried out. It has been noted that the LFN in non-rotated (0 rotated) and 45 rotated devices operating in the linear regime shows 1/f behavior independent on the gate bias, whereas in the saturation regime both 1/f and Lorentzian (1/f2) noises are observed. The former one prevails at lower frequencies and the 1/f2 noise at higher ones. In this case, the corner frequency shows an exponential dependence on the gate bias. © 2013 Elsevier Ltd. All rights reserved.
  • Artigo 2 Citação(ões) na Scopus
    In-depth low frequency noise evaluation of substrate rotation and strain engineering in N-type triple gate SOI Finfets
    (2015) Doria R.T.; De Souza M.A.S.; Martino J.A.; Simoen E.; Claeys C.; Pavanello M.A.
    © 2015 Elsevier B.V. All rights reserved.This work presents an experimental analysis of the low-frequency noise and the effective trap density of conventional, strained, rotated and strained-rotated SOI n-type FinFETs, respectively, for several fin widths biased at different gate voltages. Additionally, the profile of the effective trap density is presented along the depth of the gate dielectric of the devices. It is shown that strained devices present higher noise than conventional ones, independent on the fin width, which can be explained by poorer interface quality observed in strained devices. On the other hand, the low frequency noise of narrow rotated devices, where the main conduction path changes from top to sidewalls, has shown to reduce as the interface integrity is improved by substrate rotation. All the evaluated devices presented 1/f noise as the dominant noise component up to 1 kHz.
  • Artigo 15 Citação(ões) na Scopus
    The low-frequency noise behaviour of graded-channel SOI nMOSFETs
    (2007) Simoen E.; Claeys C.; Chung T.M.; Flandre D.; Pavanello M.A.; Martino J.A.; Raskin J.-P.
    It is shown that the low-frequency noise in graded-channel (GC) SOI nMOSFETs is generally of the flicker or 1/f noise type. The corresponding input-referred noise spectral density is markedly higher than for the conventional uniformly doped or the intrinsic un-doped fully depleted n-channel SOI transistors. However, this increase can only be partially explained by the effective channel length reduction provided by the lightly doped region of the GC structure. It is furthermore demonstrated that the underlying noise mechanism for the GC structures is rather related to carrier number fluctuations compared with mobility fluctuations for the intrinsic or the uniformly doped fully depleted device. It is concluded that for optimal analog performance of GC SOI nMOSFETs, high gain has to be traded off for higher 1/f noise. © 2007 Elsevier Ltd. All rights reserved.