Engenharia Elétrica
URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/21
Navegar
7 resultados
Resultados da Pesquisa
- Junctionless nanowire transistors effective channel length extraction through capacitance characteristics(2023-10-05) SILVA, E. M.; TREVISOLI, R.; Rodrigo Doria© 2023 Elsevier LtdThis work aims to extract the effective channel length (LEFF) of Junctionless Nanowire Transistors (JNT) through the maximum gate capacitance of the devices. The LEFF extraction has been done by extrapolating the maximum gate capacitance as a function of the devices’ channel length (LMASK) and has shown that LEFF is around 10–15 nm longer than LMASK for devices of different channel doping concentrations.
- SOI technology characterization using SOI-MOS capacitor(2005) Sonnenberg V.; Martino J.A.In this paper a set of simple methods is presented, to determine the main parameters of the silicon on insulator technology, using a thin film SOI-MOS capacitor. Methods to obtain the effective substrate doping concentration, substrate interface charge density and the buried oxide thickness using the two terminal SOI capacitor are presented. The front gate oxide thickness, the silicon film thickness, the silicon doping concentration and front and back interface charge density are obtained using a three terminal SOI-MOS capacitor. Bidimensional numerical simulations of SOI structure are performed for analyzing the high frequency capacitance vs. voltage curves and to test the proposed methods. These methods were applied experimentally and coherent results were found. © 2004 Elsevier Ltd. All rights reserved.
- Junctionless nanowire transistors parameters extraction based on drain current measurements(2019) Trevisoli R.; Doria R.T.; de Souza M.; Barraud S.; Pavanello M.A.© 2019 Elsevier LtdThe aim of this work is to propose and qualify a systematic method for parameters extraction of Junctionless Nanowire Transistors (JNTs) based on drain current measurements and compact modeling. As junctionless devices present a different conduction mechanism than inversion-mode transistors, the methods developed for the latter devices either are not compatible or cannot be directly applied to JNTs before a deep analysis on their applicability. The current work analyzes the extraction of the series resistance, including a discussion about the influence of the first and second order mobility degradation factors, flatband voltage and low field mobility in junctionless transistors based only on static drain current curves. An analysis of the method accuracy considering the influence of the channel length, nanowire width and height, gate oxide thickness and doping concentration is also presented for devices with different characteristics through three-dimensional numerical simulations. The inclusion of the second order effects in a drain current model is also shown, considering the extracted values. The method applicability is also successfully demonstrated in experimental devices.
- Compact model for short-channel symmetric double-gate junctionless transistors(2015) Avila-Herrera F.; Cerdeira A.; Paz B.C.; Estrada M.; Iniguez B.; Pavanello M.A.© 2015 Elsevier Ltd.Abstract In this work a compact analytical model for short-channel double-gate junctionless transistor is presented, considering variable mobility and the main short-channel effects as threshold voltage roll-off, series resistance, drain saturation voltage, channel shortening and saturation velocity. The threshold voltage shift and subthreshold slope variation is determined through the minimum value of the potential in the channel. Only eight model parameters are used. The model is physically-based, considers the total charge in the Si layer and the operating conditions in both depletion and accumulation. Model is validated by 2D simulations in ATLAS for channel lengths from 25 nm to 500 nm and for doping concentrations of 5 × 1018 and 1 × 1019 cm-3, as well as for Si layer thickness of 10 and 15 nm, in order to guarantee normally-off operation of the transistors. The model provides an accurate continuous description of the transistor behavior in all operating regions.
- Compact core model for Symmetric Double-Gate Junctionless Transistors(2014) Cerdeira A.; Avila F.; Iniguez B.; De Souza M.; Pavanello M.A.; Estrada M.A new charge-based compact analytical model for Symmetric Double-Gate Junctionless Transistors is presented. The model is physically-based and considers both the depletion and accumulation operating conditions including the series resistance effects. Most model parameters are related to physical magnitudes and the extraction procedure for each of them is well established. The model provides an accurate continuous description of the transistor behavior in all operating conditions. Among important advantages with respect to previous models are the inclusion of the effect of the series resistance and the fulfilment of being symmetrical with respect to drain voltage equal to zero. It is validated with simulations for doping concentrations of 5 × 10 18 and 1 × 1019 cm-3, as well as for layer thickness of 10 and 15 nm, allowing normally-off operation. © 2014 Elsevier B.V.
- On the improvement of DC analog characteristics of FD SOI transistors by using asymmetric self-cascode configuration(2016) De Souza M.; Flandre D.; Doria R.T.; Trevisoli R.; Pavanello M.A.© 2015 Elsevier Ltd. All rights reserved.This paper demonstrates the improvement of DC analog performance of FD SOI transistors provided by the adoption of asymmetric self-cascode (A-SC) configuration. It consists of two transistors connected in series with gates shortened, acting as a single device. The doping concentration of the two transistors in the structure is different, leading to higher threshold voltage of the transistor at the source side of the composite structure than that of the transistor at the drain side. By reducing the doping concentration level at the channel of the transistor at drain side of the composite structure, forcing it to work in saturation, part of the applied drain bias is absorbed and does not reach the transistor close to the source, which is the main responsible for the overall device characteristics. As a result, larger drain current level and transconductance are obtained in comparison to symmetric self-cascode (where both transistors present same doping level) apart from promoting output conductance reduction. The transconductance, output conductance, Early voltage, and intrinsic voltage gain are used as figures of merit to demonstrate and validate the advantages of the proposed structure. The influence of channel length and doping concentration are also evaluated. The A-SC configuration is fully compatible with any standard FD SOI MOSFET technology with multiple threshold voltages. A simulation analysis demonstrates the feasibility of the proposed asymmetric structure in a UTBB FD SOI technology.
- Low-frequency noise and effective trap density of short channel p- and n-types junctionless nanowire transistors(2014) Doria R.T.; Trevisoli R.; De Souza M.; Pavanello M.A.This work presents an evaluation of the Low-Frequency Noise (LFN) exhibited by short-channel Junctionless Nanowire Transistors (JNTs). Unlike in previous works in which only the noise of n-type transistors was evaluated, this paper exhibits an analysis of both the LFN and the effective trap density of n- and p-type JNTs. The low-frequency noise is analyzed in terms of the channel length as well as doping concentration and has shown to be nearly independent on the former parameter when the device is biased above threshold and to decrease with the raise of the latter. Also, carrier number fluctuations dominate the LFN in nMOS JNTs whereas an important mobility fluctuation component is present in the pMOS ones. The effective trap density of JNTs has shown to be in the order of 1019 cm-3 eV-1, presenting its maximum around 1.4 nm away from the silicon/gate dielectric interface independently on the device type or doping concentration. © 2014 Elsevier Ltd. All rights reserved.