Please use this identifier to cite or link to this item: https://repositorio.fei.edu.br/handle/FEI/1012
Title: A study of a multi-thresholding segmentation algorithm based on bio-inspired metaheuristic and non-extensive tsallis statistics
Authors: RODRIGUES, Paulo
BOUZON, M. F.
HORVATH, M.
VARELA, V. P.
LOPES, Guilherme
Issue Date: 2019
Abstract: An image segmentation process is one of the most important steps in an image recognition or analysis application pipeline. It is a step that splits each image into disjointed regions of interest. It is also a task that is usually performed by biological processes, such as human visual system. Due to the low processing and ease of implementation, one of the most used techniques is the thresholding method, which consists in finding the best cutting thresholds of a probability distribution histogram. However, the higher the number of thresholds, the greater the computational complexity. And there is no consensus on the number of thresholds and the partitioning position as well. This paper presents a study of the number of thresholds for segmenting an image into their regions of interest. For this purpose, the proposed method uses a bio-inspired algorithm based on meta-heuristics, called firefly with a non-extensive Tsallis statistics kernel. Also, the images are pre-filtered with a low-pass filter based on a q-gaussian function. Using a manually segmented database, the results show that there is an inverse correlation between the Fourier spectrum of an image and the number of thresholds which most approximates the image from the used ground truth. This suggests an automatic method for calculating the required number of thresholds.
Journal: Journal of Multidisciplinary Engineering Science and Technology
ISSN: 2458-9403
Citation: RODRIGUES, Paulo; BOUZON, M. F.; HORVATH, M.; VARELA, V. P.; LOPES, Guilherme. A study of a multi-thresholding segmentation algorithm based on bio-inspired metaheuristic and non-extensive tsallis statistics. Journal of Multidisciplinary Engineering Science and Technology, v. 6, n.1, p. 9411-9420, Jan. 2019.
Access Type: Acesso Aberto
URI: https://repositorio.fei.edu.br/handle/FEI/1012
Appears in Collections:Artigos

Files in This Item:
File Description SizeFormat 
RI_1012.pdf1 MBAdobe PDFThumbnail
View/Open


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.