Bridging experiment and theory: Morphology, optical, electronic, and magnetic properties of MnWO4
Arquivos
Tipo de produção
Artigo
Data de publicação
2022-01-05
Texto completo (DOI)
Periódico
Applied Surface Science
Editor
Texto completo na Scopus
Citações na Scopus
16
Autores
ASSIS, M.
TELO, A. C. M.
ABUD, F. S. A.
NEGRE, P.
RIBEIRO, L. K.
RIBEIRO,R. A. P.
S. H. Masunaga
LIMA, A. E. B.
LUZ JUNIOR, G. E.
JARDIM, R. F.
Orientadores
Resumo
© 2022 The AuthorsManganese tungstate (MnWO4) compounds have gathered tremendous interest in the research community due to their wide range of applications. Herein, we show a comprehensive experimental, theoretical and computational study aimed at providing an in-depth understanding of the morphology as well as optical, electronic and magnetic properties of monoclinic MnWO4. In order to evaluate such properties together with the geometry and vibrational frequencies of these materials, first-principles calculations were used at the DFT level. The synthesis and analysis of these properties were then featured by (i) the composition, geometry, and electronic and magnetic structure of the exposed surfaces at the morphology based on the different numbers of unsaturated superficial Mn and W cations (local coordination, i.e., clusters) of each surface, and (ii) the determination of the energy profiles associated with the transformation process between different morphologies. Additionally, we used a combination of theories and simulations to link experimental results to a prediction of the corresponding properties. These system-specific findings at the atomic level provide a powerful insight for understanding and tuning optical/electronic/magnetic properties of MnWO4-based materials.
Citação
ASSIS, M.; TELO, A. C. M.; ABUD, F. S. A.; NEGRE, P.; RIBEIRO, L. K.; RIBEIRO,R. A. P.; MASUNAGA, S. H.; LIMA, A. E. B.; LIMA, A. E. B.;LUZ JUNIOR, G. E.; JARDIM, R. F.; SILVA, A. B. F.; ANDRES, J.; LONGO, E. Bridging experiment and theory: Morphology, optical, electronic, and magnetic properties of MnWO4. Applied Surface Science, v. 600, 2022.
Palavras-chave
Keywords
Density functional theory; Electronic and magnetic properties; MnWO4; Morphology; Optical; Surface structure
Assuntos Scopus
Computational studies; Density-functional-theory; Electronic and magnetic properties; In-depth understanding; Monoclinics; Optical electronics; Optical-; Property; Research communities; Theoretical study