Machine learning methods for vessel type classification with underwater acoustic data

dc.contributor.advisorSantos, Paulo Eduardo
dc.contributor.authorDomingos, Lucas Cesar Ferreira
dc.coverage.areaInteligência Artificial Aplicada à Automação e Robóticapt_BR
dc.date.accessioned2023-01-09T01:12:39Z
dc.date.available2023-01-09T01:12:39Z
dc.date.issued2022
dc.description.abstractA identificaçãodeembarcaçõesemambientesdetráfegocontroladopodeserbenéfica para manutençãodabiodiversidadeeproteçãodosambientescosteirosderegiõesprotegidas, gerandocontribuiçõesparaacomunidadelocaleparaoecossistema.Nesseâmbito,vê-se latente anecessidadedemelhorestécnicasdeidentificaçãoeclassificaçãodeembarcações, proporcionando mecanismosparamelhoradestessistemas.Sinaissonorossubaquáticossão mais difíceisdeseremmascaradosouomitidosduranteanavegaçãodeumaembarcaçãoquando comparados comoutrasfontesdedados,proporcionandoumafonteconfiáveleresistentea fraudes parasistemasdeclassificação,porém,estessofreminterferênciasdascondiçõesdomeio em queseencontram.Nestetrabalho,umametodologiafoipropostapararealizaraclassificação de sinaissonorossubaquáticosprovenientesdeembarcaçõesutilizandotécnicasdeaprendizado de máquina,considerandotambémasvariáveisambientais,comoadistânciaentreoshidrofonese as embarcações.Umacomparaçãorelativaàperformancedasredesneuraisconvolucionaismais comuns foirealizadautilizandoaarquiteturadaVGGedaResNet18.Tambémforamrealizadas comparações entreostrêsfiltrosdepré-processamentoscomumentepresentesnaliteratura,os espectrogramasMel,osfiltrosGamma,eatransformadadeconstanteQ,proporcionandoum estudosobreoimpactodetaisvariáveisnaclassificaçãofinal.Devidoaescassezdeconjuntos de dadosanotadosparaestudodesteproblema,umconjuntodedadosanotadosfoiproposto utilizando comobaseossinaissonorosdainiciativaOceanCanadaNetwork.Osresultados obtidos atingiramaacuráciade94.95%noconjuntodedadospropostousandoCQTcomofiltro de pré-processamentoparaumaredeneuralconvolucionalbaseadanaResNet.Oscódigosfontes para reproduçãodostestes,assimcomoparaobtençãododataset,estãodisponibilizadosde maneira gratuita e pública para fins acadêmicos
dc.description.abstractVesselidentificationinacontrolledtrafficenvironmentcanbebeneficialforbiodiversity maintenance andcoastalenvironmentsurveillanceinprotectedregions,generatingcontributions to thelocalcommunityandtheecosystem.Inthiscontext,thereisalatentneedforbetter techniquesforidentifyingandclassifyingvessels,providingmechanismstoimprovethesesystems. Underwatersoundsignalsaremorechallengingtobemaskedoromitted,duringthenavigationof a vessel,whencomparedtootherdatasources,providingareliableandfraud-resistantsourcefor classification systems,however,theysufferinterferencefromtheconditionsoftheenvironment in whichtheyareused.Inthiswork,amethodologywasproposedtoperformtheunderwater acousticclassification,usingsignalsproducedbyvessels,usingmachinelearningtechniques, and alsoconsideringenvironmentalvariables,suchasthedistancebetweenthehydrophonesand the targetvessels.Acomparisonregardingtheperformanceofthemostcommonconvolutional neural networkswasperformedusingtheVGGandResNet18architectures.Comparisonswere also madebetweenthethreepreprocessingfilterscommonlypresentintheliterature,theMel spectrograms,theGammafilters,andtheconstantQtransform,providingastudyontheimpact of suchvariablesinthefinalclassification.Duetothescarcityofannotateddatasetstostudythis problem, anannotateddatasetwasproposedbasedonthesoundsignalsoftheOceanCanada Networkinitiative.Theresultsobtainedreachedtheaccuracyof94.95%ontheproposeddataset using CQTasthepreprocessingfilterforaResNet-basedconvolutionalneuralnetwork.The source codesforreproducingthetests,aswellasforobtainingthedataset,arefreelyandpublicly available for academic purposes
dc.identifier.citationDOMINGOS, Lucas Cesar Ferreira. <b> Machine learning methods for vessel type classification with underwater acoustic data. </b> 2022. 89 f. Dissertação (Mestrado em Engenharia Elétrica) - Centro Universitário FEI, São Bernardo do Campo, 2022. Disponível em: https://doi.org/10.31414/EE.2022.D.131558.
dc.identifier.doihttps://doi.org/10.31414/EE.2022.D.131558
dc.identifier.urihttps://repositorio.fei.edu.br/handle/FEI/4674
dc.languageeng
dc.language.isoen_US
dc.publisherCentro Universitário FEI, São Bernardo do Campo
dc.subjectDeep learning
dc.subjectAcústica
dc.subjectHidrofones
dc.titleMachine learning methods for vessel type classification with underwater acoustic datapt_BR
dc.typeDissertaçãopt_BR
Arquivos
Pacote Original
Agora exibindo 1 - 1 de 1
Carregando...
Imagem de Miniatura
Nome:
fulltext.pdf
Tamanho:
1.35 MB
Formato:
Adobe Portable Document Format