Repositório do Conhecimento Institucional do Centro Universitário FEI
 

Heuristic reinforcement learning applied to RoboCup simulation agents

Imagem de Miniatura

Tipo de produção

Artigo de evento

Data de publicação

2008-07-10

Texto completo (DOI)

Periódico

Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics)

Editor

Citações na Scopus

18

Autores

CELIBERTO JUNIOR, L. A.
RIBEIRO, C. H. C.
COSTA A. H. R.
Reinaldo Bianchi

Orientadores

Resumo

This paper describes the design and implementation of robotic agents for the RoboCup Simulation 2D category that learns using a recently proposed Heuristic Reinforcement Learning algorithm, the Heuristically Accelerated Q-Learning (HAQL). This algorithm allows the use of heuristics to speed up the well-known Reinforcement Learning algorithm Q-Learning. A heuristic function that influences the choice of the actions characterizes the HAQL algorithm. A set of empirical evaluations was conducted in the RoboCup 2D Simulator, and experimental results show that even very simple heuristics enhances significantly the performance of the agents. © 2008 Springer-Verlag Berlin Heidelberg.

Citação

CELIBERTO JUNIOR, L. A.; RIBEIRO, C. H. C.; COSTA A. H. R.;BIANCHI, R. Heuristic reinforcement learning applied to RoboCup simulation agents. Lecture Notes in Computer Science (including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioinformatics). p. 220-227, July, 2008.

Palavras-chave

Keywords

Cognitive Robotics; Reinforcement Learning; RoboCup Simulation 2D

Assuntos Scopus

Cognitive Robotics; Empirical evaluations; International symposium; Q-Learning; Reinforcement Learning algorithms; RoboCup; RoboCup simulation; RoboCup Simulation 2D; Robot-soccer; Robotic agents; Speed ups; World Cup

Coleções

Avaliação

Revisão

Suplementado Por

Referenciado Por