Artigos
URI permanente para esta coleçãohttps://repositorio.fei.edu.br/handle/FEI/798
Navegar
3 resultados
Resultados da Pesquisa
- Low-frequency noise of n-type triple gate FinFETs fabricated on standard and 45 rotated substrates(2013) Doria R.T.; Martino J.A.; Simoen E.; Claeys C.; Pavanello M.A.This paper studies the impact of the 45 substrate rotation on the low-frequency noise (LFN) of triple gate nFinFETs. The overall LFN has been extracted for both standard and 45 substrate rotated devices of several fin widths at different drain and gate voltage biases focusing on their operation in saturation regime. A general view of the mechanisms which govern the low-frequency noise in MOS devices is provided and a brief discussion on the physical origins of the LFN in the evaluated devices is carried out. It has been noted that the LFN in non-rotated (0 rotated) and 45 rotated devices operating in the linear regime shows 1/f behavior independent on the gate bias, whereas in the saturation regime both 1/f and Lorentzian (1/f2) noises are observed. The former one prevails at lower frequencies and the 1/f2 noise at higher ones. In this case, the corner frequency shows an exponential dependence on the gate bias. © 2013 Elsevier Ltd. All rights reserved.
- Analog performance of standard and strained triple-gate silicon-on-insulator nFinFETs(2008) Pavanello M.A.; Martino J.A.; Simoen E.; Rooyackers R.; Collaert N.; Claeys C.This work shows a comparison between the analog performance of standard and strained Si n-type triple-gate FinFETs with high-κ dielectrics and TiN gate material. Different channel lengths and fin widths are studied. It is demonstrated that both standard and strained FinFETs with short channel length and narrow fins have similar analog properties, whereas the increase of the channel length degrades the early voltage of the strained devices, consequently decreasing the device intrinsic voltage gain with respect to standard ones. Narrow strained FinFETs with long channel show a degradation of the Early voltage if compared to standard ones suggesting that strained devices are more subjected to the channel length modulation effect. © 2008 Elsevier Ltd. All rights reserved.
- Harmonic distortion of 2-MOS structures for MOSFET-C filters implemented with n-type unstrained and strained FINFETS(2011) Doria R.T.; Simoen E.; Claeys C.; Martino J.A.; Pavanello M.A.This work investigates the harmonic distortion (HD) in 2-MOS balanced structures composed of triple gate FinFETs. HD has been evaluated through the determination of the third-order harmonic distortion (HD3), since this represents the major non-linearity source in balanced structures. The 2-MOS structures with devices of different channel lengths (L) and fin widths (W fin) have been studied operating in the linear region as tunable resistors. The analysis was performed as a function of the gate voltage, aiming to verify the correlation between operation bias and HD3. The physical origins of the non-linearities have been investigated and are pointed out. Being a resistive circuit, the 2-MOS structure is generally projected for a targeted on-resistance, which has also been evaluated in terms of HD3. The impact of the application of biaxial strain has been studied for FinFETs of different dimensions. It has been noted that HD3 reduces with the increase of the gate bias for all the devices and this reduction is more pronounced both in narrower and in longer devices. Also, the presence of strain slightly diminishes the non-linearity at a similar bias. However, a drawback associated with the use of strain engineering consists in a significant reduction of the on-resistance with respect to unstrained devices. © 2011 Elsevier Ltd. All rights reserved.