Repositório do Conhecimento Institucional do Centro Universitário FEI
 

Engenharia Elétrica

URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/21

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 10 de 15
  • Artigo de evento 2 Citação(ões) na Scopus
    The role of the incomplete ionization on the operation of Junctionless Nanowire Transistors
    (2012-10-04) TREVISOLI, R. D.; Rodrido Doria; Michelly De Souza; FERAIN, I.; DAS, S.; Pavanello M.A.
    The use of planar MOS devices for the sub-20 nm era has become a great challenge due to the loss of the gate control on the channel charges [1]. Multi-gate architecture provides a better electrostatic control, allowing a higher degree of miniaturization [1]. One of the major drawbacks of either planar or multi-gate extremely short devices is the formation of p-n junctions between source/drain and the channel, which requires precise thermal conditions in order to avoid the impurities diffusion into the channel. In this context, Junctionless Nanowire Transistors (JNTs) have been developed [2-3]. They consist of heavy doped silicon nanowires (N+ for nMOS and P+ for pMOS) surrounded by a gate stack. The device is doped from source to drain with the same element type and concentration, such that there are no gradients or junctions. Fig. 1 presents a schematic view (A) and the longitudinal section (B) of an nMOS JNT. These devices are based on bulk conduction [4] and have shown to provide better subthreshold slope, DIBL and analog properties than inversion-mode devices of similar dimensions [5-6]. Recent papers have shown the temperature (7) influence on the behavior of JNTs [7-8]. The main characteristic was the absence of the zero temperature coefficient (ZTC) bias, i.e. a point in which the drain current is almost the same independently of the temperature. In these papers, this absence has been attributed to the higher threshold voltage (Vm) and the lower mobility (μ) dependences on T [7]. This paper shows that JNTs can present a ZTC bias, which strongly depends on the series resistance. © 2012 IEEE.
  • Artigo 4 Citação(ões) na Scopus
    Modeling the interface traps-related low frequency noise in triple-gate SOI junctionless nanowire transistors
    (2019) Trevisoli R.; Doria R.T.; Barraud S.; Pavanello M.A.
    © 2019 Elsevier B.V.The aim of this work is to propose a semi-analytical model for the low frequency noise caused by interface traps in Triple-Gate Junctionless Nanowire Transistors. The proposed model is based on a drain current model, which includes short channel effects influence. The surface potential and the occupied trap density equations are solved self consistently to obtain the traps influence in the static drain current, which is used to determine the trap-related noise. In this work, the low frequency noise of traps in discrete levels is analyzed. The model has been validated with 3D simulations considering different devices characteristics, biases and trap levels. Experimental results have also been used to demonstrate the model suitability.
  • Artigo 36 Citação(ões) na Scopus
    Substrate bias influence on the operation of junctionless nanowire transistors
    (2014) Trevisoli R.; Doria R.T.; De Souza M.; Pavanello M.A.
    The aim of this paper is to analyze the substrate bias influence on the operation of junctionless nanowire transistors based on 3-D simulated and experimental results, accomplished by modeled data. The threshold voltage, the maximum transconductance, the subthreshold slope, the drain-induced barrier lowering (DIBL), and the ION/IOFF ratio are the key parameters under analysis. It has been shown that the negative back bias can reduce the short-channel effects occurrence, improving the ION/ OFF ratio and DIBL. © 1963-2012 IEEE.
  • Artigo 7 Citação(ões) na Scopus
    Junctionless nanowire transistors parameters extraction based on drain current measurements
    (2019) Trevisoli R.; Doria R.T.; de Souza M.; Barraud S.; Pavanello M.A.
    © 2019 Elsevier LtdThe aim of this work is to propose and qualify a systematic method for parameters extraction of Junctionless Nanowire Transistors (JNTs) based on drain current measurements and compact modeling. As junctionless devices present a different conduction mechanism than inversion-mode transistors, the methods developed for the latter devices either are not compatible or cannot be directly applied to JNTs before a deep analysis on their applicability. The current work analyzes the extraction of the series resistance, including a discussion about the influence of the first and second order mobility degradation factors, flatband voltage and low field mobility in junctionless transistors based only on static drain current curves. An analysis of the method accuracy considering the influence of the channel length, nanowire width and height, gate oxide thickness and doping concentration is also presented for devices with different characteristics through three-dimensional numerical simulations. The inclusion of the second order effects in a drain current model is also shown, considering the extracted values. The method applicability is also successfully demonstrated in experimental devices.
  • Artigo 9 Citação(ões) na Scopus
    Compact modeling of triple gate junctionless MOSFETs for accurate circuit design in a wide temperature range
    (2019) Pavanello M.A.; Cerdeira A.; Doria R.T.; Ribeiro T.A.; Avila-Herrera F.; Estrada M.
    © 2019 Elsevier LtdThis paper presents the extension of proposed physically-based continuous compact analytical model of triple gate junctionless nanowire transistors for accurate description of device electrical characteristics in a wide temperature range from room temperature up to 500 K. The model validation is performed by comparison against tridimensional numerical simulation and experimental data showing very good agreement, with continuous description of drain current and its derivatives in all regions of operation and temperatures.
  • Artigo 10 Citação(ões) na Scopus
    Drain current model for short-channel triple gate junctionless nanowire transistors
    (2016) Paz B.C.; Casse M.; Barraud S.; Reimbold G.; Faynot O.; Avila-Herrera F.; Cerdeira A.; Pavanello M.A.
    © 2016 Elsevier LtdThis work proposes a numerical charge-based new model to describe the drain current for triple gate junctionless nanowire transistors (3G JNT). The drain current is obtained through a numerical integration of a single expression that physically describes the junctionless charge density in both accumulation and depletion regimes of operation, leading to a continuous model in all operational regions. The triple gate structure is modeled from an evolution of a previous model designed for double gate junctionless nanowire transistors (2G JNT). Improvements concerning the capacitance coupling, the internal potential changing while reducing the fin height in nanowire transistors and higher immunity to short-channel effects (SCE) are considered. The model validation is performed through both tridimensional numerical simulation and experimental measurements for long and short-channel devices. Through simulated results, it is verified the agreement of the modeled curves for junctionless transistors with different values of fin height. Comparison between the proposed model and experimental data is performed for 3G JNT advanced structures with channel length down to 15 nm and fin height of 8 nm. Results for 3G JNTs with different values of doping concentration and channel width are also displayed showing a good agreement as well. Moreover, 3G JNT performance is also analyzed and compared in the studied structures by extracting the threshold voltage (VTH), subthreshold slope (S), DIBL and model parameters.
  • Artigo 10 Citação(ões) na Scopus
    Analysis of the substrate bias effect on the interface trapped charges in junctionless nanowire transistors through low-frequency noise characterization
    (2017) Doria R.T.; Trevisoli R.; de Souza M.; Barraud S.; Vinet M.; Faynot O.; Pavanello M.A.
    © 2017 Elsevier B.V.This work presents, for the first time, an experimental analysis of the low-frequency noise and the effective trap density dependence of junctionless nanowire transistors (JNTs) on the substrate bias. The study has been performed for devices with different channel lengths and doping concentrations biased close to the threshold and deep in linear regime. It has been shown that the surface potential of JNTs is strongly influenced by the substrate bias even above threshold. Thus, the drain current noise spectral density and the effective trap density can be improved or degraded depending on the bias applied to the substrate of the devices. Additionally, it is shown that, the variation on the substrate bias enables the evaluation of traps with different activation energy ranges, which is more evident in heavier doped devices due to the higher threshold voltage sensitivity to the substrate bias.
  • Artigo 18 Citação(ões) na Scopus
    Junctionless nanowire transistors operation at temperatures down to 4.2 K
    (2016) Trevisoli R.; De Souza M.; Doria R.T.; Kilchtyska V.; Flandre D.; Pavanello M.A.
    © 2016 IOP Publishing Ltd.The aim of this work is to analyze the operation of junctionless nanowire transistors down to the liquid helium temperature. The drain current, the transconductance, the output conductance, the subthreshold slope, the threshold voltage and the interface trap density are the key parameters under analysis, which has been performed through experimental results together with simulated data. Oscillations in the transconductance and output conductance have been observed in the experimental results of junctionless devices for temperatures lower than 77 K. The experimental drain current curves also exhibited a 'drain threshold voltage' for the lower temperatures. The impact of the source/drain contact resistance and discrete trap levels has been analyzed by means of simulations.
  • Artigo 11 Citação(ões) na Scopus
    Extraction of the interface trap density energetic distribution in SOI Junctionless Nanowire Transistors
    (2015) Trevisoli R.; Doria R.T.; De Souza M.; Pavanello M.A.
    © 2015 Elsevier B.V. All rights reserved.Abstract This work proposes a method for extracting the energetic distribution of the interface trap density at the gate dielectric in Junctionless silicon Nanowire Transistors. The proposed method uses the subthreshold slope extraction combined with the substrate bias in order to induce a variation in the channel potential, such that the interface trap density can be extracted for a significant energy range. Three-dimensional TCAD numerical simulations have been performed to analyze the accuracy of the proposed method considering different concentrations and trap density profiles (uniform and exponential). The influence of the device width variation on the trap energy determination has been analyzed, showing that only for positive substrate biases the energy might be affected. The method precision was also analyzed, showing that the trap density extraction is only effectively affected for low Nit values, which do not influence significantly the device performance. Finally, the method has been applied to experimental transistors with high-κ and silicon dioxide gate dielectrics showing consistent results.
  • Artigo 21 Citação(ões) na Scopus
    Analytical model for the dynamic behavior of triple-gate junctionless nanowire transistors
    (2016) Trevisoli R.; Doria R.T.; De Souza M.; Barraud S.; Vinet M.; Pavanello M.A.
    © 2015 IEEE.This paper presents an analytical model for the intrinsic capacitances and transconductances of triple-gate junctionless nanowire transistors. The model is based on a surface-potential drain current model, which includes shortchannel effects, and accounts for the dependences on the device dimensions, doping concentration, and quantum effects. It is validated with 3-D Technology Computer-Aided Design (TCAD) simulations for several device characteristics and biases as well as with the experimental results.