Repositório do Conhecimento Institucional do Centro Universitário FEI
 

Engenharia Elétrica

URI permanente desta comunidadehttps://repositorio.fei.edu.br/handle/FEI/21

Navegar

Resultados da Pesquisa

Agora exibindo 1 - 5 de 5
  • Artigo 17 Citação(ões) na Scopus
    Analog operation temperature dependence of nMOS junctionless transistors focusing on harmonic distortion
    (2011-09-05) Rodrigo Doria; Marcelo Antonio Pavanello; TREVISOLI, R. D.; Michelly De Souza; LEE, C.-W.; FERAIN, I.; AKHAVAN, N. D.; YAN, R.; RAZAVI, P.; YU, R.; FRANTI, A.; COLINGE, J-P.
    This paper performs a comparative study of the analog performance of Junctionless Nanowire Transistors (JNTs) and classical Trigate inversion mode (IM) devices focusing on the harmonic distortion. The study has been carried out in the temperature range of 223 K up to 473 K. The non-linearity or harmonic distortion (HD) has been evaluated in terms of the total and the third order distortions (THD and HD3, respectively) at a fixed input bias and at a targeted output swing. Several parameters important for the HD evaluation have also been observed such as the transconductance to the drain current ratio (gm/IDS), the Early voltage (VEA) and the intrinsic voltage gain (AV). Trigate devices showed maximum AV around room temperature whereas in JNTs the intrinsic voltage gain increases with the temperature. Due to the different AV characteristics, Junctionless transistors present improved HD at higher temperatures whereas inversion mode Trigate devices show better HD properties at room temperature.When both devices are compared, Junctionless transistors present better THD and HD3 with respect to the IM Trigate devices.
  • Imagem de Miniatura
    Artigo 54 Citação(ões) na Scopus
    Impact of the series resistance in the I-V characteristics of junctionless nanowire transistors and its dependence on the temperature
    (2012-01-05) Rodrigo Doria; TREVISOLI, R. D.; Michelly De Souza; Marcelo Antonio Pavanello
    The effect of the source/drain parasitic resistance (R S) on the I-V characteristics of Junctionless Nanowire Transistors (JNTs) has been evaluated through experimental and simulated data. The impact of several parameters such as the temperature, the fin width, the total doping concentration, the source/drain length and the source/drain doping concentration on R S has been addressed. The source/drain parasitic resistance presented by JNTs was compared to the one presented by classical inversion mode (IM) triple gate devices, showing opposite behavior with the temperature variation in IM triple transistors and JNTs. In the latter, a reduction on R S is noted with the temperature increase, which is related to the incomplete ionization. This effect inhibits the presence of a Zero Temperature Coefficient (ZTC) operation bias in the Junctionless devices.
  • Imagem de Miniatura
    Artigo 8 Citação(ões) na Scopus
    Drain current and short channel effects modeling in junctionless nanowire transistors
    (2013-01-05) TREVISOLI, R. D.; Rodrigo Doria; Michelly De Souza; Marcelo Antonio Pavanello
    © 2013, Brazilian Microelectronics Society. All rights reserved.Junctionless nanowire transistors (JNTs) are considered promising for the sub-20 nm era, since they provide a great scalability without the need for rigorously controlled doping techniques. In this work, the modeling of triple-gate JNTs is addressed, focusing on the short-channel effects. Analytical expressions for the subthreshold slope, threshold voltage roll-off and drain induced barrier lowering are presented. The model is validated using tridimensional numerical simulations.
  • Imagem de Miniatura
    Artigo 0 Citação(ões) na Scopus
    The roles of the gate bias, doping concentration, temperature and geometry on the harmonic distortion of junctionless nanowire transistors operating in the linear regime
    (2014-05-05) Rodrigo Doria; TREVISOLI, R.; Michelly De Souza; ESTRADA, M.; CERDEIRA, A.; Marcelo Antonio Pavanello
    © 2014, Journal of Integrated Circuits and Systems 2014. All rights received.The linearity of Junctionless nanowire transistors operating in the linear regime has been evaluated through experimental data and numerical simulations. The influences of the fin width, the gate bias, the temperature, the doping concentration and the geometry on the overall linearity have been evaluated. The increase of the series resistance associated both to the variation of the physical parameters and the incomplete ionization effect has shown to improve the second order distortion and degrade the third order one.
  • Artigo 1 Citação(ões) na Scopus
    Origin of the low-frequency noise in the asymmetric self-cascode structure composed by fully depleted SOI nMOSFETs
    (2017-08-05) ASSALTI, R.; Rodrigo Doria; FLANDRE, D.; Michelly De Souza
    © 2017, Brazilian Microelectronics Society. All rights reserved.In this paper the origin of low-frequency noise in the Asymmetric Self-Cascode (A-SC) structure composed by Fully Depleted SOI nMOSFETs is investigated through experimental results. It is shown that the predominant noise source of the A-SC structure is linked to carrier number fluctuations, being governed by the noise generated in the transistor near the source. Larger channel doping concentrations degrade the quality of the Si-SiO2 interface and the gate oxide, which causes an increase of the normalized drain current noise spectral density, just as the reduction of the gate voltage overdrive, since there are few carriers in the channel. The A-SC structures have showed higher noise compared with single transistors. In saturation regime, the increase of the gate voltage overdrive has incremented the corner frequency, shifting the g-r noise to higher frequencies. Besides that, the normalized noise has been significantly increased when compared with the linear regime due to the rise of the drain current noise spectral density.